
HaViMo2

Image Processing Module

March 13, 2010

Features

• Integrated Color CMOS Camera

� Frame Resolution: 160*120 Pixels

� Color Depth: 12 bits YCrCb

� Frame Rate: 19 Fps

� Full Access to all CMOS Camera registers

∗ Saving values in EEPROM, no need to recon�gure after power on

∗ Auto / Manual Exposure, Gain and White balance

∗ Adjustable Hue/Saturation

• Color-Based Image Processing

� Integrated Color Look-up Table

∗ Saved in FLASH, No need to recalibrate after power on

∗ Up to 256 Objects can be de�ned

∗ 3D viewing and editing tools

∗ Real-time LUT overlay on the Camera Image

� On-line Region-growing

∗ Detection of up to 15 contiguous Regions per Frame

1



∗ Reporting Color, CoM, Number of Pixels and Bounding box for each region

∗ Adjustable Noise / small Region �ltering

� On-line Griding

∗ Reduces the Resolution of the Image to 32*24

∗ Minimum Loss of Information using Object Priority

∗ Reports Color and Number of Pixels for each 5x5 Cell

� Raw image output in both calibration and implementation modes

∗ Interlaced Output at 19 FPS

∗ Full Frame Output at 0.5 FPS

• Supported Hardware

� Half Duplex (ROBOTIS )

∗ CM5

∗ CM510

∗ USB2Dynamixel

� Full Duplex (RoboBuilder)

∗ RBC

� Requirements for other platforms

∗ TTL level RS232

∗ 115200 BAUD for Full Duplex Mode (RoboBuilder Mode)

∗ 1 MBAUD for Half Duplex Mode (ROBOTIS Mode)

• Supported Software

� Roboplus (ROBOTIS )

� Direct C programming (ROBOTIS )

� RBC �rmware

� Direct C programming (RoboBuilder)

1 Introduction

HaViMo is a computer vision solution for low power microprocessors. It is equipped with a CMOS
camera chip and a microcontroller which performs the image processing. The results are then
accessed via serial port. In HaViMo2 several features such as frame rate are improved.

In addition to the region growing algorithm available in prior versions, a new algorithm is imple-
mented called Griding. The algorithm is a suitable pre-processing step for many other applications
such as object recognition and self localization.

The compatibility area of the module is also extended to more software and hardware platforms.
HaViMo2 is compatible with ROBOTIS and RoboBuilder bridges. It can also be integrated in
programs developed in Roboplus. Other platforms can also communicate with the module using
either half or full-duplex serial protocols.

2



2 Hardware Setup

The module can be used in di�erent con�gurations according to the hardware platform it is used
in conjunction with. These are described in calibration and implementation modes.

a) Direct Calibration using USB2Dynamixel

b) In-System Calibration in ROBOTIS Mode

c) In-System Calibration in RoboBuilder Mode

Figure 1. Possible Hardware Con�gurations in Calibration Mode.

In calibration mode the module is connected to a PC where a GUI facilitates the access to camera
parameters as well as the color look-up table. in this mode, the camera chip can be con�gured and
color to object associations are established by user according to the lighting conditions.

Possible con�gurations in calibration modes are:

• Direct Calibration using USB2Dynamixel

• The module is connected through USB2Dynamixel to a PC. Note that it is necessary to
connect the power supply externally to the device.

• In-System Calibration in ROBOTIS Mode

� The module is connected through a standard ROBOTIS bridge (CM5, CM510) to a PC.
The �rmware of the bridge allows data communication between HaViMo2 and the PC

3



• In-System Calibration in RoboBuilder Mode

� The module is connected through a standard RoboBuilder bridge (RBC) to a PC. The
�rmware of the bridge allows data communication between HaViMo2 and the PC. To
enter this mode the marked pins on the PCB should be jumpered prior to module start-
up.

a) Implementation on a PC Platform using USB2Dynamixel

b) Implementation in ROBOTIS Mode

c) Implementation in RoboBuilder Mode

Figure 2. Possible Hardware Con�gurations in Implementation Mode

3 Function Description

HaViMo2 is accessed on a serial bus. A communication protocol is designed for accessing the
device which works on a command/response basis. A command packet contains an instruction
which invokes a function of the device, reads or writes values or a combinations of these. In this
section the function of the device is described.

3.1 Communication Protocol

HaViMo2 supports both half and full duplex communications in physical layer. This makes the
module compatible with both ROBOTIS and RoboBuilder platforms. However to avoid con�icts

4



with other members of the bus, it is also necessary to support the communication protocols of
both platforms. Following diagram shows a summary of command and response packets in both
operation modes.

CMD

RESP
Command and Response Packets in ROBOTIS Mode

CMD

RESP
Command and Response Packets in RoboBuilder Mode

Figure 3. Command and Response Packets in ROBOTIS and RoboBuilder Modes

3.1.1 Communication Protocol in ROBOTIS Mode

To understand the communication protocol in ROBOTIS mode, it is recommended to read Dy-

namixel AX-12 data sheet. The Command packet is structured as follows.

Header 2 times 0xFF.

ID Fixed on 0x64 = 100.

LEN Number of bytes to be further transmitted.

INST Instruction code described in table 1.

PARn Optional parameters passed to the instruction.

CHK Check sum is calculated as complement of the lowest 8 bits of the sum of all bytes in the
packet excluding the header.

The response packet has a similar structure as the command packet, however the instruction is
replaced with an error indicator and parameters are �lled with the results of running the instruction.

3.1.2 Communication Protocol in RoboBuilder Mode

To understand the communication protocol in RoboBuilder mode, it is recommended to refer to
the RoboBuilder wCK data sheet. The idea behind RoboBuilder compatibility mode is to simulate

5



a RoboBuilder con�guration packet being transmitted to ID = 30 which is not existing on the bus,
so that it is ignored by the other bus members.

The command packet is structured as follows.

Header The sequence 0xFF 0xFE, which also includes the �xed ID = 30

INST Instruction code described in table 1.

PAR1,PAR2 Parameters associated with the instruction. Note that The number of parameters
must always be 2

CHK Check sum is the lowest 7 bits of the exclusive or of the instruction and the parameters.

3.2 Instructions

Following table shows available instruction in HaViMo2.

Instruction Value No. of Param. Function
PING 0x01 0 No action. Used for obtaining a Status Packet

READ_REGION 0x02 2 Read Results of Region Detection
WRITE 0x03 2 Equivalent to CAP_REGION for Compatibility

READ_REG 0x0C 2 Read Camera Chip Registers
WRITE_REG 0x0D 2 Write Camera Chip Registers (1)
CAP_REGION 0x0E 0 Capture and Find Color Regions (1)
RAW_SAMPLE 0x0F 0 Sample the Raw Image (used by GUI) (2)
LUT_MANAGE 0x10 0 Enter LUT Manage Mode (used by GUI) (2)
RD_FILTHR 0x11 2 Read Noise Filter Thresholds
WR_FILTHR 0x12 2 Write Noise Filter Thresholds (1)
RD_REGTHR 0x13 2 Read Region Filter Thresholds
WR_REGTHR 0x14 2 Write Region Filter Thresholds (1)
CAP_GRID 0x15 0 Capture and Compress using Griding algorithm (1)
READ_GRID 0x16 2 Read Results of the Griding Algorithm (3)

SAMPLE_FAST 0x17 0 Fast Sample (used by GUI) (2) (4)
(1) No return packets are generated for these instructions.
(2) Response is di�erent from ROBOTIS/RoboBuilder standard packets.
(3) The given address is internally multiplied by 16
(4) Not supported in RoboBuilder Mode

Table 1. Available Instruction in HaViMo2

PING This instruction is used to check whether the device exists and is ready to receive the next
instruction. The instruction returns an empty status packet.

READ_REGION This instruction is used to read the results of the region growing algorithm.
This command accepts multi byte read. The data structure is described further in the data
sheet.

WRITE This instruction is to achieve compatibility to Roboplus as it only supports READ and
WRITE instructions. Therefore a write to an arbitrary address simulates a CAP_REGION
instruction.

6



READ_REG This instruction is to read the content of camera registers. It is the same as READ
instruction. This command accepts multi byte read.

WRITE_REG This instruction is to write the content of camera registers. It is the same as the
WRITE instruction but it accepts only single byte write.

CAP_REGION This instruction starts capturing and processing of the next available frame.
The processing algorithm used in this instruction is Region Growing. It takes approximately
60 ms to process a full frame. The main CPU should pole the functionality of the device using
the PING command before sending the next instruction. The results can be then accessed
using READ_REGION instruction.

RAW_SAMPLE With this instruction the camera module transmits a full frame of raw image
data. This instruction is used when the GUI receives a request to sample a raw image. This
instruction does not use the Standard packet protocol.

LUT_MANAGE After receiving this instruction, the module enters the programming mode, in
this mode the device accepts no more packets, but other instructions assigned to manage the
look-up table, such as erasing, reading and writing into it. This instruction is used by User
interface during calibration phase and should not be used in implementation phase.

RD_FILTHR, WR_FILTHR These instructions make access to the threshold values of the
noise �lter. Noise �lter thresholds are actually the minimum number of neighbor pixels in
a scan line which should be counted as a part of a region. For each color a separate 8-bit
threshold should be de�ned. Default values are 8 for unknown color and 2 for others. The
address �eld contains the index of the color category (0 = unknown,. . . ). The structure of
these instructions are the same as in READ and WRITE, however multi-byte read/write is
not supported.

RD_REGTHR WR_REGTHR These instructions provide access to the threshold values of
the region �lter. The region �lter thresholds de�ne the minimum number of pixels inside a
region, regions with fewer pixels are �ltered away. For each color a separate 16-bit threshold
should be de�ned. The address �eld contains 2*index of the color category (0 = unknown,. . . ).
Default values are (0,5,50,50,50,100,50,50). No region is built for color 0 (unknown). The
structure of these instructions are the same as in READ and WRITE, however multi-byte
read/write is not supported.

CAP_GRID This instruction invokes the griding algorithm. The algorithm compresses the image
into a 32*24 cell grid and reports the number of pixels and the color observed in the 5x5 window
related to the cell. Only one color is accepted for each cell. Lower color codes dominate the
higher ones but Unknown = 0 has the lowest priority.

READ_GRID This instruction reads the results of the griding algorithm. It has a similar struc-
ture to other READ instructions but the given address is internally multiplied by 16. This
gives access to a wider range of addresses, however at least 16 bytes should be read to cover
the whole space. The data structure is described further in the data sheet.

SAMPLE_FAST This instruction is used to download a RAW image from the module. Unlike
RAW_SAMPLE instruction, the image is transferred with full baud rate, 1Mbps. Therefore
it is not possible to use the instruction with low baud rates such as in RoboBuilder mode.

7



3.3 Image Processing Algorithms

HaViMo2 is equipped with two image processing algorithms, which are described in this section.
In the �rst step both algorithms translate color values to object codes using the built-in look-up
table. Therefore an exact calibration of the colors should have a great impact on the results of the
recognition.

3.3.1 On-line Region Growing Algorithm

The goal of the region growing algorithm is to detect contiguous color blobs in the image. A 4-
pixel neighborhood is used to determine connections. The function is invoked using the instruction
CAP_REGION. The detected regions are summarized using the following parameters:

Value Bytes Description
Index 1 Contains zero if the region is invalid and nonzero otherwise.
Color 1 Color code of the detected region (0 = Unknown, 1 = Ball , . . . )
Pixels 2 Number of detected pixels inside the region
SumX 4 Sum of the X coordinates of the detected pixels (*)
SumY 4 Sum of the Y coordinates of the detected pixels (*)
MaxX 1 Bounding box right margin
MinX 1 Bounding box left margin
MaxY 1 Bounding box bottom margin
MinY 1 Bounding box top margin
(*) Values can be divided by the number pixels to obtain the center point.

Figure 3. Data Format of the Results of Region Growing Algorithm

Figure 4. Results of the Region Growing Algorithm

8



To access the results, the instruction READ_REG should be used. Up to 15 regions can be
read from the address range 0x10 to 0xFF using the READ_REG (0x02) instruction. Following
example shows the produced output of the module according to a given image.

3.3.2 On-line Griding Algorithm

After invoking the griding algorithm with CAP_GRID instruction, it compresses the image into a
grid of 32*24. Each cell is a representative for a 5x5 square on the original image. For each cell one
byte is calculated which contains the �owing information. The lower 4 bits determine which color
was the most prior detected in the square. The higher 4 bits are the number of pixels occupied
with this color. If over 15 pixels are detected the count remains 15.

The algorithms results 768 bytes of data. These can be read using the READ_GRID instruction.
Note that the given address is internally multiplied by 16 to increase the access range. It is therefore
required that a multi-byte read operation with at least 16 bytes be used.

Following example shows the result of a the griding algorithm. Note that only the color is
visualized.

9


