
Product Manual
1014 - PhidgetInterfaceKit 0/0/4



Phidgets 1014 - Product Manual

For Board Revision 1

© Phidgets Inc. 2009



Contents

5	Product Features

5	 Programming Environment

5	 Connection

6	Getting Started

6	 Checking the Contents

6	 Connecting all the pieces

6	 Testing Using Windows 2000/XP/Vista

6	 Downloading the Phidgets drivers

6	 Running Phidgets Sample Program
7	 Testing Using Mac OS X

8	 If you are using Linux 

8	 If you are using Windows Mobile/CE 5.0 or 6.0

9	Programming a Phidget

9	 Architecture

9	 Libraries

9	 Programming Hints

9	 Networking Phidgets

10	 Documentation

10	 Programming Manual

10	 Getting Started Guides

10	 API Guides
10	 Code Samples

10	 API for the PHidgetInterfaceKit 0/0/4

10	 Functions

10	 Events

11	 Technical Section

11	 Relays

11	 Using a Digital Output Relay

11	 Wetting Current

11	 Load Noise

12	 Mechanical Drawing



12	 Device Specifications

13	 Product History

13	 Support



51014_1_Product_Manual - September 14, 2009 11:25 AM

Product Features

Contains 4 Relay Outputs for switching AC or DC power•	

Ratings: 250VAC, 10 Amps  or 100VDC, 5 Amps•	

Relays are Single Pole Double Throw (SPDT) •	

Provides a convenient way to interface your PC with various higher-voltage devices such as incandescent bulbs, •	
high-power relays, and motors

Programming Environment
Operating Systems: Windows 2000/XP/Vista, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP, 
and Cocoa.

Examples: Many example applications for all the operating systems and development environments above are 

available for download at www.phidgets.com >> Programming.

Connection
The board connects directly to a computer’s USB port.



61014_1_Product_Manual - September 14, 2009 11:25 AM

Connect the red/positive (+) wire from the battery 1.	
connector to one of the bulb wires.

Connect the black/negative (-) wire from the battery 2.	
connector to the NO (Normally Open) connector on the 
InterfaceKit.

Connect the other bulb wire to the OC (Common) 3.	
connector on the InterfaceKit.

Connect the InterfaceKit to your PC using the USB cable.4.	

1

4

2

3

Getting Started

Checking the Contents

In order to test your new Phidget you will also 
need:

 A 9V battery•	

A battery connector•	

A 9V incandescent bulb with wires•	

You should have received:

A PhidgetInterfaceKit 0/0/4•	

A USB Cable•	

Connecting all the pieces

Testing Using Windows 2000/XP/Vista
Downloading the Phidgets drivers
Make sure that you have the current version of the Phidget library installed on your PC.  If you don’t, do the 
following:

Go to www.phidgets.com >> Drivers

Download and run Phidget21 Installer (32-bit, or 64-bit, depending on your PC)

You should see the  icon on the right hand corner of the Task Bar.

Running Phidgets Sample Program

Double clicking on the  icon loads the Phidget Control Panel; we will use this program to make sure that your 
new Phidget works properly. 
The source code for the InterfaceKit-full sample program can be found under C# by clicking on www.phidgets.com 
>> Programming.



71014_1_Product_Manual - September 14, 2009 11:25 AM

Double Click on the  icon to activate the 
Phidget Control Panel and make sure that Phidget 
InterfaceKit 0/0/4 is properly attached  to your PC.

Double Click on 1.	 Phidget 
InterfaceKit 0/0/4 in the 
Phidget Control Panel to bring up 
InterfaceKit-full and check that the 
box labelled Attached contains the 
word True.

Click on the first Digital Out box. 2.	
A tick mark appears in the box 
and the bulb lights up. Click on 
the box again. The tick mark goes 
away and the light goes out. If 
you unplug the USB cable while 
the light is on, it will go off. The 
bottom row shows the status of the 
request, while the top row displays 
the status of the digital output as 
reported by the device.

Move the positive (+) wire from NO to NC (normally closed). The light is now on when the Digital box has no 3.	
tick mark. Clicking on the box turns the light off. If you unplug the USB cable when the light is on, it will stay 

on.

1

2

3

Testing Using Mac OS X
Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane•	

Make sure that the •	 Phidget InterfaceKit 0/0/4 is properly attached.

Double Click on •	 Phidget InterfaceKit 0/0/4 in the Phidget Preference Pane to bring up the InterfaceKit-full 
example. This example will function in a similar way as the Windows version.



81014_1_Product_Manual - September 14, 2009 11:25 AM

If you are using Linux 
There are no sample programs written for Linux.

Go to www.phidgets.com >> Drivers

Download Linux Source

Have a look at the readme file •	

Build Phidget21 •	

The most popular programming languages in Linux are C/C++ and Java.

Notes: 

Many Linux systems are now built with unsupported third party drivers.  It may be necessary to uninstall these 
drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library.  Applications typically have to be run as root, or udev/hotplug must be 
configured to give permissions when the Phidget is plugged in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86 or ARMV4I, depending on the platform you are using.  Mini-itx and ICOP systems will be x86, and 
most mobile devices, including XScale based systems will run the ARMV4I.

The CE libraries are distributed in .CAB format.  Windows Mobile/CE is able to directly install .CAB files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#).  A desktop version of Visual 
Studio can usually be configured to target your Windows Mobile Platform, whether you are compiling to machine 
code or the .NET Compact Framework.



91014_1_Product_Manual - September 14, 2009 11:25 AM

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices 
like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have 
developed a complete set of Application Programming Interfaces (API) that are supported for Windows, Mac OS X, 
and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW, 
Python, Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not impose our own 
programming model on you. 

To achieve  this goal we have implemented the libraries as a series of layers with the C API at the core surrounded 
by other language wrappers.

Libraries
The lowest level library is the C API.  The C API can be programmed against on Windows, CE, OS X and Linux.  With 
the C API, C/C++, you can write cross-platform code.  For systems with minimal resources (small computers), the C 
API may be the only choice.

The Java API is built into the C API Library.  Java, by default is cross-platform - but your particular platform may not 
support it (CE).  

The .NET API also relies on the C API.  Our default .NET API is for .NET 2.0 Framework, but we also have .NET 
libraries for .NET 1.1 and .NET Compact Framework (CE).  

The COM API relies on the C API.  The COM API is programmed against when coding in VB6, VBScript, Excel (VBA), 
Delphi and Labview.  

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see below).  ActionScript 3.0 
is used in Flex and Flash 9.

Programming Hints
Every Phidget has a unique serial number - this allows you to sort out which device is which at runtime.  Unlike •	
USB devices which model themselves as a COM port, you don’t have to worry about where in the USB bus you 
plug your Phidget in.  If you have more than one Phidget, even of the same type, their serial numbers enable 
you to sort them out at runtime.

Each Phidget you have plugged in is controlled from your application using an object/handle specific to that •	
phidget.  This link between the Phidget and the software object is created when you call the .OPEN group of 
commands.  This association will stay, even if the Phidget is disconnected/reattached, until .CLOSE is called.

The Phidget APIs are designed to be used in an event-driven architecture.  While it is possible to poll them, we •	
don’t recommend it.  Please familiarize yourself with event programming.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network proxy on a computer.  The 
PhidgetWebService will allow other computers on the network to communicate with the Phidgets connected to that 
computer.  ALL of our APIs have the capability to communicate with Phidgets on another computer that has the 
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that you wrote and that are 
connected to the PhidgetWebService, through the PhidgetDictionary object.



101014_1_Product_Manual - September 14, 2009 11:25 AM

Documentation
Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in a language and device 
unspecific way, providing a general overview of the Phidgets API as a whole.  You can find the manual at www.
phidgets.com >> Programming.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the manual exists for the 
language you want to use, this is the first manual you want to  read. The Guides can be found at www.phidgets.com 
>> Programming and are listed under the appropriate language.

API Guides
We maintain API references for COM (Windows), C (Windows/Mac OSX/Linux), Action Script, .Net and Java. These 
references document the API calls that are common to all Phidgets. These API References can be found under www.
phidgets.com >> Programming and are listed under the appropriate language. To look at the API calls for a specific 
Phidget, check its Product Manual. 

Code Samples
We have written sample programs to illustrate how the APIs are used. 

Due to the large number of languages and devices we support, we cannot provide examples in every language for 
every Phidget.  Some of the examples are very minimal, and other examples will have a full-featured GUI allowing 
all the functionality of the device to be explored.  Most developers start by modifying existing examples until they 
have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the 
language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the 
devices for which we wrote code samples in that language.

Functions
nt OutputCount() [get] : Constant = 4

Returns the number of digital outputs supported by this PhidgetInterfaceKit.

bool OutputState (int OutputIndex) [get,set]

Sets/returns the state of a digital output. Setting this to true will activate the output, False is the default state.  
Reading the OutputState immediately after setting it will not return the value set - it will return the last state 
reported by the Phidget. 

Events
OnOutputChange(int OutputIndex, bool State),  [event]

An event that is issued when the state of a digital output changes.

API for the PHidgetInterfaceKit 0/0/4
We document API Calls specific to this product in this section. Functions common to all Phidgets and functions not 
applicable to this device are not covered here. This section is deliberately generic. For calling conventions under a 
specific language, refer to the associated API manual. For exact values, refer to the device specifications.



111014_1_Product_Manual - September 14, 2009 11:25 AM

Technical Section

Relays
A relay is an electrically-controlled switch.  Although 
many types of electrical switches exist, a relay’s 
mechanical nature gives it the advantage of reliability 
and current-switching capacity.  The main disadvantage 
to using mechanical relays is their limited life-span, as 
opposed to solid state relays who do not suffer from this 
drawback.

Using a Digital Output Relay
Relays have a connection scheme determined by the 
arrangement of contacts within the relay.  Because relays 
are a type of switch, they are defined in the same way 
other electromechanical switches are defined.

In switch schemes, the number of poles represents 
the number of common terminals a switch has, and the number of throws represents the number of switchable 
terminals that exist for each pole.  The relays used in the InterfaceKit 0/0/4 are SPDT relays:  single pole, double 
throw.  The internal construction of this type of relay is depicted in the diagram above.  Many other types of relays 
exist:  SPST, DPDT, and DPST, to name a few.

In an SPDT relay, one of the throw terminals is labelled Normally Closed (NC), and the other is labelled Normally 
Open (NO).  As the name indicates, the normally closed terminal is the terminal connected to common when the 
relay coil is not powered.  When the relay coil is energized by the relay control circuit, the electromagnetic field of 
the coil forces the switch element inside the relay to break its contact with the normally closed terminal and make 
contact with the normally open terminal.  The switch element would then connect the normally open terminal and 
the common terminal.

Wetting Current
When a relay is in one switch position for a period of time, oxidation of the open contact(s) can occur.  Depending 
upon the internal coating material of the contacts, oxide films of varying density will be displaced upon the surface 
of open contacts; this film acts as an insulator to current flow.  When the relay is switched, a certain amount of 
current flowing through the contacts, known as the wetting current, is required to remove the film of oxides and 
ensure proper conduction.  Because of this requirement, these relays are not reliable for signal switching.  See the 
device specification on page 10 for detailed requirements.

Load Noise
If highly inductive loads are used with the InterfaceKit, it is recommended that a noise limiting component be used 
to prevent damage to the device.  An MOV, TVS diode, or kickback diode (for DC applications) shunted across the 
load will assist in dissipating voltage transients.

NC

NO
C

NORMALLY
CLOSED

NORMALLY
OPEN

COMMON



121014_1_Product_Manual - September 14, 2009 11:25 AM

Mechanical Drawing

1:1 scale

Device Specifications

Characteristic Value
Contact Resistance (max) 120 mohms

Minimum Switching Current (Wetting Current) 100mA @ 5VDC

Maximum DC Switching Voltage 100 VDC

Maximum DC Switching Current 5 A

Maximum AC Switching Voltage 250 VAC

Maximum AC Switching Current 10 A

Operate Time 10 ms

Switching Speed (Contacts Per Minute) 20 cpm

Recommended Terminal Wire Size 12 - 24 AWG

Terminal Wire Strip Length 5 - 6mm (0.196” - 0.236”)

Device Quiescent Current Consumption 14mA

Device Active Current Consumption 320mA max

Maximum Ambient Temperature 70°C

Note: When printing the mechanical drawing, “Page Scaling” in the Print panel must be set to “None” to avoid 
re-sizing the image.



131014_1_Product_Manual - September 14, 2009 11:25 AM

Date Board Revision Device Version Comment

August 2002 700 Product Release

January 2004 704 Added State Echoing

May 2008 1 Terminal Blocks now accept 12-24 AWG wire, PCB 
increased to accommodate larger connectors.

Support
Call the support desk at 1.403.282.7335 8:00 AM to 5:00 PM Mountain Time (US & Canada) - GMT-07:00•	

or

E-mail us at: support@phidgets.com•	

Product History


	Product Features
	Programming Environment
	Connection

	Getting Started
	Checking the Contents
	Connecting all the pieces
	Testing Using Windows 2000/XP/Vista
	Downloading the Phidgets drivers
	Running Phidgets Sample Program

	Testing Using Mac OS X
	If you are using Linux 
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation
	Programming Manual
	Getting Started Guides
	API Guides

	Code Samples
	API for the PHidgetInterfaceKit 0/0/4
	Functions
	Events


	Technical Section
	Relays
	Using a Digital Output Relay
	Wetting Current
	Load Noise
	Mechanical Drawing
	Device Specifications

	Product History
	Support

