FlexiForce® A201 Standard Force & Load Sensors

area

Actual size of sensor

Physical Properties

Thickness 0.008" (0.208 mm) Length 7.75" (197 mm),

optional trimmed lengths: 6" (152 mm), 4" (102 mm), or 2" (51mm)

Width 0.55" (14 mm)

Sensing Area 0.375" diameter (9.53 mm)

Connector 3-pin Male Square Pin (center pin is inactive)

Substrate Polyester (ex: Mylar)

Standard Force Ranges (as tested with circuit shown below)

0 - 1 lb. (4.4 N) 0 - 25 lb. (110 N)

0 - 100 lb. (440 N)*

In order to measure forces above 100 lb (up to 1000 lb), apply a lower drive voltage and reduce the resistance of the feedback resistor ($1k\Omega$ min.)

Recommended Circuit

- * Supply Voltages should be constant
- ** Reference Resistance ${\rm R_Fis}~{\rm 1k}\Omega~{\rm to}~{\rm 100k}\Omega$
- Sensor Resistance R_S at no load is > $5M\Omega$
- Max recommended current: 2.5 mA

Typical Performance

Evaluation Conditions

Linearity (Error) $< \pm 5\%$

Repeatability $< \pm 2.5\%$ of full scale Hysteresis < 4.5% of full scale

Drift < 5% per logarithmic time scale

Response Time < 5 µsec

oponee inite

Operating Temperature 15°F - 140°F (-9°C - 60°C)*

Line drawn from 0 to 50% load

Conditioned sensor, 80% of full force applied Conditioned sensor, 80% of full force applied

Constant load of 25 lb (111 N)

Impact load, output recorded on oscilloscope

Time required for the sensor to respond to an input force

^{*}Force reading change per degree of temperature change = $\pm 0.2\%$ /°F (0.36%/°C)

^{*}For loads less than 10 lbs., the operating temperature can be increased to 165°F (74°C)